Transformer-Based Adaptive Line Enhancer for Passive Sonar Detection
编号:43 访问权限:仅限参会人 更新:2024-10-23 10:49:40 浏览:234次 口头报告

报告开始:2024年11月02日 09:10(Asia/Shanghai)

报告时间:20min

所在会场:[P1] Parallel Session 1 [P1-2] Parallel Session 1(November 2 AM)

暂无文件

摘要
The low-frequency narrow-band tonal components in the radiated noise of underwater targets are crucial features for passive sonar detection. Traditional adaptive line enhancer (ALE) exhibit limited performance at low signal-to-noise ratios (SNR). This paper proposes a Transformer-based adaptive line enhancer (TALE) to address this limitation. The proposed method leverages Transformer networks to enhance radiated noise signals from hydroacoustic targets in the time domain. The attention mechanism of the Transformer neural network enables the model to effectively learn both time-domain signal information and signal correlations. Simulation results demonstrate that the TALE algorithm offers significant spectral enhancement. Compared to traditional ALE and a deep-learning-based line enhancer (DLE), this algorithm can effectively improve the SNR of ship-radiated noise signals by 14 dB and 11 dB, respectively, under very low SNR conditions of -30 dB.
关键词
ship radiated noise,adaptive line enhancer,low signal-to-noise ratio (SNR),Transformer
报告人
OrdoqinHasqimeg
Mrs. Northwestern Polytechnical University

稿件作者
DongHaitao Northwestern Polytechnical University;Key Laboratory of Ocean Acoustics and Sensing
ShenXiaohong Northwestern Polytechnical University
OrdoqinHasqimeg Northwestern Polytechnical University
WangHaiyan Northwestern Polytechnical University
WangJiwan Northwestern Polytechnical University;Key Laboratory of Ocean Acoustics and Sensing
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月31日

    2024

    11月03日

    2024

  • 09月30日 2024

    初稿截稿日期

  • 11月12日 2024

    注册截止日期

主办单位
Anhui University
Xi’an Jiaotong University
Harbin Institute of Technology
IEEE Instrumentation & Measurement Society
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询