U-Net-based contrastive blind denoising method for micro-thrust measurement signal
编号:48 访问权限:仅限参会人 更新:2024-10-23 10:25:15 浏览:166次 口头报告

报告开始:2024年11月02日 08:50(Asia/Shanghai)

报告时间:20min

所在会场:[P1] Parallel Session 1 [P1-2] Parallel Session 1(November 2 AM)

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Accurate noise suppression is vital for precise micro-thrust calibration and measurement. Conventional methods often fail to recover both nonlinear transitions and smooth trends within the signal effectively. In this research, we present an innovative U-Net-based contrastive blind denoising method that operates without needing a reference clean signal. Our method introduces contrastive representation learning combined with self-supervised blind denoising, forming a multi-task joint learning framework. This joint learning framework compels the network to extract robust content-invariant and disentangled features, i.e., clean signal features). Experiments validate the proposed method's superior performance in recovering both nonlinear transitions and smooth trends in the signal, outperforming traditional methods.
关键词
micro-thrust measurement,blind denoising,contrastive learning,U-Net
报告人
ChenXingyu
Doctor Southeast University

稿件作者
ChenXingyu Southeast University
ZhaoLiye Southeast University
XuJiawen Southeast University
LiZhengyu Southeast University
HanMingming Southeast University
DaiZhuoping Southeast University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月31日

    2024

    11月03日

    2024

  • 09月30日 2024

    初稿截稿日期

  • 11月12日 2024

    注册截止日期

主办单位
Anhui University
Xi’an Jiaotong University
Harbin Institute of Technology
IEEE Instrumentation & Measurement Society
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询