A Time-Series Segmentation and Contrastive Learning Method for Fault Diagnosis of Rotating Machinery
编号:68 访问权限:仅限参会人 更新:2024-10-23 10:41:49 浏览:157次 口头报告

报告开始:2024年11月01日 15:00(Asia/Shanghai)

报告时间:20min

所在会场:[P4] Parallel Session 4 [P4-1] Parallel Session 4(November 1 PM)

暂无文件

摘要
The reliability and stability of rotating machinery are critical to industrial productivity and safety. In this study, a novel multi-fault diagnosis method for rotating machinery is proposed, combining time series segmentation and contrast learning techniques. The method effectively improves the accuracy of fault classification by segmenting raw sensor signals and extracting robust feature representations using contrast learning. We evaluate the performance of the method on the publicly available dataset and show that it outperforms existing methods in terms of both fault classification accuracy and generalization ability. This research provides an efficient and scalable solution for predictive maintenance strategies in industrial environments.
关键词
fault diagnosis,contrastive learning,time-series analysis,time-series segmentation
报告人
XiYue
PhD Student Xi’an Jiaotong University

稿件作者
XiYue Xi’an Jiaotong University
LeiZihao Xi'an Jiaotong University
FanJinsong Xi’an Jiaotong University
ShanSong SINOPEC
SuYu Xi'An Jiaotong University
WenGuangrui Xi'an Jiaotong University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月31日

    2024

    11月03日

    2024

  • 09月30日 2024

    初稿截稿日期

  • 11月12日 2024

    注册截止日期

主办单位
Anhui University
Xi’an Jiaotong University
Harbin Institute of Technology
IEEE Instrumentation & Measurement Society
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询