FPGA-Based Lightweight Dual-Stage Multi-Exposure Image Fusion
编号:8 访问权限:仅限参会人 更新:2024-10-23 11:38:57 浏览:233次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Deep learning-based multi-exposure image fusion (MEF) methods have demonstrated robust performance. However, these methods require considerable computational resources and energy, which greatly limits their practical deployment. To address this issue, we propose a lightweight, dual-stage MEF method, termed LDMEF. By effectively deploying on field-programmable gate array (FPGA), this method significantly enhances its range of applications and flexibility. Specifically, in the initial stage, LDMEF preprocesses the input sequences by leveraging the parallel processing capabilities of FPGA to compute a preliminary image through pixel-wise addition and averaging, ensuring both simple and rapid execution. Subsequently, in the second stage, our proposed method incorporates depthwise separable convolution with the preliminary image to facilitate a lightweight network that is both straightforward to deploy and simple in design. This network meticulously fine-tunes the preliminary image at the pixel level, achieving high-quality fusion results. Extensive evaluations on publicly available datasets confirm that LDMEF not only achieves remarkable results but also outperforms many GPU-based learning MEF methods.
 
关键词
Deep learning,multi-exposure image fusion,lightweight,field-programmable gate array
报告人
杨徐子谦
研究生 安徽大学

稿件作者
杨徐子谦 安徽大学
屠韬 中国科学技术大学
刘永斌 安徽大学
陈怀安 中国科学技术大学
金一 中国科学技术大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月31日

    2024

    11月03日

    2024

  • 09月30日 2024

    初稿截稿日期

  • 11月12日 2024

    注册截止日期

主办单位
Anhui University
Xi’an Jiaotong University
Harbin Institute of Technology
IEEE Instrumentation & Measurement Society
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询