Research on demagnetization fault diagnosis method of permanent magnet wind turbine based on ResNet-50 network transfer learning model
编号:92 访问权限:仅限参会人 更新:2024-10-23 10:33:51 浏览:178次 口头报告

报告开始:2024年11月02日 09:10(Asia/Shanghai)

报告时间:20min

所在会场:[P4] Parallel Session 4 [P4-2] Parallel Session 4(November 2 AM)

暂无文件

摘要
Abstract—Residual networks (ResNet) in convolutional neural networks (CNN) were used for demagnetization fault image recognition and classification. Initially, we collected a dataset of demagnetization fault characteristics in permanent magnet wind generators. Using this dataset, a ResNet50 fault diagnosis model was developed for a 25kW wind turbine. This model was then transferred to a 2MW permanent magnet wind generator using deep transfer learning. Compared to models without transfer learning, this approach significantly improved fault diagnosis accuracy and efficiency.
 
关键词
Permanent Magnet Wind Turbines,Fault Diagnosis,Transfer Learning,Convolutional Neural Networks Introduction
报告人
DuSiyu
Student Xi'an Jiaotong University

稿件作者
DuSiyu Xi'an Jiaotong University
ChenYu Xi'an Jiaotong University
ZhangSichao Xi’an Jiaotong University
LiangFeng Xi'an Jiaotong University
ShahbazNadeem Xi’an Jiaotong University
GuoqiangZhu Xi'an Jiaotong University
zhaoshouwang Xi'an Jiaotong University
WangShuag Xi'an Jiaotong University
MaYong Xi’an Thermal Power Research Institute Co. Ltd
LiChong Xi’an Thermal Power Research Institute Co. Ltd
ZhongjieWang Xi’an Thermal Power Research Institute Co. Ltd.
ZhaoYong Xi’an Thermal Power Research Institute Co. Ltd
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月31日

    2024

    11月03日

    2024

  • 09月30日 2024

    初稿截稿日期

  • 11月12日 2024

    注册截止日期

主办单位
Anhui University
Xi’an Jiaotong University
Harbin Institute of Technology
IEEE Instrumentation & Measurement Society
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询