10 / 2025-01-14 19:44:14
Deep Neural Network Based Model Predictive Control for SIMO DC-DC Converter
deep neural network, model predictive control, single-inductor multiple-output dc-dc converter
全文录用
Xinqiang Tang / Sun Yat-sen University
Zhipengp Li / Sun Yat-sen University
Sujan Adhikari / Hillside College of Engineering
Fan Feng / Sun Yat Sen University
Benfei Wang / Sun Yat-sen University
The application of model predictive control (MPC) in single-inductor multiple-output (SIMO) DC-DC converters can effectively address the cross-regulation problem. However, the high sensitivity of MPC to model inaccuracies and parameter mismatch limits its practical adoption. To overcome this limitation, this article introduces a deep neural network based model predictive control (DNN-MPC) method that alleviates the dependency of MPC on precise system models. The proposed approach has been validated using a MATLAB/Simulink simulation model. The results indicate that DNN-MPC not only reduces energy consumption by   reducing switching actions but also delivers superior dynamic performance, tracking accuracy, and robustness against varying system parameters and operating conditions. Compared to the conventional MPC method, DNN-MPC achieves a 31% reduction in   settling time, smaller voltage ripples, and a 57% decrease in the number of switching actions, resulting in   lower energy losses. These simulation results affirm the effectiveness of DNN-MPC for the SIMO DC-DC converter.
重要日期
  • 会议日期

    06月05日

    2025

    06月08日

    2025

  • 04月30日 2025

    初稿截稿日期

主办单位
IEEE PELS
IEEE
承办单位
Southeast University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询