50 / 2025-01-28 10:17:07
GD-Based Robust Model Predictive Control for DC-DC Converters with Inductance Identification
dual active bridge converter,model predictive control,gradient descent,parameter identification,robustness
全文录用
Zheng Yin / Southeast University
Fujin Deng / Southeast University
Yaqian Zhang / Southeast University
Sayed Abulanwar / Mansoura University
Yifu Ren / Tsinghua University
FengTao Gao / Tsinghua University;Xi'an University of Technology
Garcia Cristian / Universidad de Talca
Jose Rodriguez / Universidad San Sebastian
The voltage performance of conventional model predictive control (MPC) depends on the accuracy of leakage inductance parameters in dual active bridge (DAB) converters. To address this issue, a gradient-descent-based robust model predictive control (GD-RMPC) is proposed. By integrating the mathematical model of the DAB converter, a gradient-descent equation is established to achieve real-time online identification of the leakage inductance parameter, ensuring robust output voltage control for the DAB converter. The proposed method allows for rapid, accurate, and online identification of the leakage inductance parameter, suppressing the adverse effects of parameter mismatches on conventional MPC. Finally, a DAB converter experimental platform is established, and the effectiveness of the proposed method is validated.
重要日期
  • 会议日期

    06月05日

    2025

    06月08日

    2025

  • 04月30日 2025

    初稿截稿日期

主办单位
IEEE PELS
IEEE
承办单位
Southeast University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询