Improved Predictor-Based Neural Network Model-Free Finite-Set Predictive Control for Power Converters
编号:12 访问权限:仅限参会人 更新:2025-04-21 14:04:55 浏览:23次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
The model-free predictive current control based on the ultra-local model using predictor-based neural network (PNN) significantly reduces the sensitivity to the prior model parameters of the power converter. However, the performance of PNN degrades due to the amplified high-frequency disturbances caused by mismatched inductance parameters, especially when the inductance parameters are reduced. In order to address the aforementioned issue, in this paper an improved predictor-based neural network model-free finite set predictive control (IPNN-MFFSPC) for power converters is proposed. A fast and accurate method for estimating the inductance parameters is proposed based on discrete equations of the PNN. By compensating for inductance parameter disturbances, the robustness of the proposed method is further improved. Finally, simulations validate the effectiveness of the proposed method in handling inductance disturbances, confirming the strong robustness of the approach.
关键词
Parameter mismatch,ultra-local model,model-free predictive control,robustness
报告人
Bohao Zhang
Master Zhejiang University

稿件作者
Bohao Zhang Zhejiang University
Lin Qiu Zhejiang University
Shengwei Chen zhejiang university
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    06月05日

    2025

    06月08日

    2025

  • 04月30日 2025

    初稿截稿日期

主办单位
IEEE PELS
IEEE
承办单位
Southeast University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询