A Dual-Vector Predictive Control Method Based on PSO Parameter Identification for NPC Inverters
编号:120访问权限:仅限参会人更新:2025-05-06 15:16:34浏览:12次口头报告
报告开始:暂无开始时间(Asia/Shanghai)
报告时间:暂无持续时间
所在会场:[暂无会议] [暂无会议段]
暂无文件
提示
无权点播视频
提示
没有权限查看文件
提示
文件转码中
摘要
The conventional model predictive control (MPC) is highly dependent on load parameters and has limited robustness. In this paper, a dual-vector model predictive control algorithm based on particle swarm optimization (PSO) for parameter identification is proposed. The PSO algorithm is used to identify the load parameters, while the dual-vector method enhances the prediction accuracy and robustness. MATLAB/Simulink is used for simulation analysis, and experiments are conducted to validate the effectiveness of the proposed method.
关键词
particle swarm optimization,parameter identification,dual-vector,robustness,model predictive control
发表评论