A Dual-Vector Predictive Control Method Based on PSO Parameter Identification for NPC Inverters
编号:120 访问权限:仅限参会人 更新:2025-05-06 15:16:34 浏览:12次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
The conventional model predictive control (MPC) is highly dependent on load parameters and has limited robustness. In this paper, a dual-vector model predictive control algorithm based on particle swarm optimization (PSO) for parameter identification is proposed. The PSO algorithm is used to identify the load parameters, while the dual-vector method enhances the prediction accuracy and robustness. MATLAB/Simulink is used for simulation analysis, and experiments are conducted to validate the effectiveness of the proposed method.
关键词
particle swarm optimization,parameter identification,dual-vector,robustness,model predictive control
报告人
Juncheng Zhang
Mr. Zhejiang University

稿件作者
Juncheng Zhang Zhejiang University
Lin Qiu Zhejiang University
Tingjun Pan Zhejiang University
Xing Liu Shanghai Dianji University
Jien Ma Zhejiang University
Jose Rodriguez Universidad San Sebastian
Youtong Fang Zhejiang University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    06月05日

    2025

    06月08日

    2025

  • 04月30日 2025

    初稿截稿日期

主办单位
IEEE PELS
IEEE
承办单位
Southeast University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询