Data-driven Model Predictive Current Control for PMSM Drives with Bayesian Linear Regression
编号:37 访问权限:仅限参会人 更新:2025-05-06 14:48:05 浏览:8次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
The conventional model predictive current control (MPCC) method is highly sensitive to motor parameters, resulting in decreased control performance when the model parameters are mismatched with the motor parameters. To address parameter sensitivity and improve the robustness of the control system, this paper proposes a data-driven model predictive current control method (BLR-MPCC), which utilizes the machine learning technique Bayesian linear regression. This method constructs a current prediction model based on the voltage difference and the current difference, considers the parameters of the linear model as random variables, and solves the model parameters online using the Markov chain Monte Carlo (MCMC) numerical method. Simulation results validate the effectiveness of the proposed method.
关键词
PMSM,AC motor drive,model predic- tive current control (MPCC),Machine learning techniques
报告人
Xiang Yu
postgraduate student North China University of Technology

稿件作者
Xiang Yu North China University of Technology
Xiaoguang Zhang North China University of Technology
Jose Rodriguez Universidad San Sebastian
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    06月05日

    2025

    06月08日

    2025

  • 04月30日 2025

    初稿截稿日期

主办单位
IEEE PELS
IEEE
承办单位
Southeast University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询