17 / 2025-04-16 17:17:19
Bearing Fault Diagnosis Based on Dual-channel DenseNet-GRU Model
DenseNet, gated recurrent unit, fault diagnosis, rolling bearing
全文待审
皓 张 / 长安大学
锐 姚 / 长安大学
奥博 贾 / 长安大学
康 李 / 长安大学
群 马 / 长安大学
萌 惠 / 长安大学
In practical engineering applications, noise often contaminates the fault signals of rolling bearings, making the accurate diagnosis of compound faults challenging. To address this issue, this paper introduces an enhanced dual-channel DenseNet-GRU model for the diagnosis of compound faults in rolling bearings. The model constructs a DenseNet channel for initial feature extraction, while integrating a gated recurrent unit (GRU) with convolutional and pooling layers to form a GRU channel, aiming to extract linear features. By employing a dual-channel connection approach, the model minimizes potential information loss or error accumulation that may occur in single-model structures. In the identification module, a multi-label classification framework is established to recognize compound faults. The proposed model underwent evaluation using the Case Western Reserve University (CWRU) dataset, with findings indicating that the DC-DenseNet-GRU architecture consistently delivers robust performance across varying load and noise scenarios.

 
重要日期
  • 会议日期

    08月01日

    2025

    08月04日

    2025

主办单位
中国机械工程学会设备智能运维分会
承办单位
新疆大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询