Understanding model diversity in seasonal prediction of the winter surface air temperature variations over China
编号:464 访问权限:仅限参会人 更新:2025-03-29 10:16:05 浏览:35次 张贴报告

报告开始:2025年04月18日 08:52(Asia/Shanghai)

报告时间:1min

所在会场:[PO] 墙报 [po] 墙报

暂无文件

摘要
Accurate prediction of winter surface air temperature (SAT) is crucial for proactive government responses to potential winter hazards. However, current state-of-the-art operational seasonal forecast systems still face challenges in accurately predicting winter SAT variations over China, with considerable model diversities in prediction skill. Here, we identified the critical physical processes that determine the prediction skill of winter SAT over China to better understand the sources of model diversity. The two leading EOF modes of interannual variability of winter SAT over China in observation are primarily driven by the strength of the Siberian High and the meridional displacement of the East Asian polar front jet (EAPJ). Additionally, sea ice conditions in the Barents–Kara region and the sea surface temperature (SST) in the Northwest Pacific also contribute to these leading modes. Although most models generally capture the spatial structure of the observed EOF patterns and their connections with critical atmospheric circulation drivers, substantial disparities exist in their ability to predict the principal components (PCs) associated with these modes. These disparities account for the differences in predictive skills for winter SAT across models. Among the prediction systems, those that more accurately predict the Siberian High index and Barents-Kara sea ice index (the EAPJ meridional displacement index and Northwest Pacific SST index) show the highest skill in forecasting PC1 (PC2), respectively. To improve prediction accuracy, we have developed a new statistical-dynamical method that combines model prediction results based on each model's ability to simulate and predict specific physical processes. This approach significantly enhances the skill of predicting winter SAT in China.
关键词
subseasonal prediction skill
报告人
姜万屹
博士生 中国科学院大气物理研究所

稿件作者
姜万屹 中国科学院大气物理研究所
胡帅 中国科学院大气物理研究所
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    04月17日

    2025

    04月21日

    2025

  • 04月10日 2025

    初稿截稿日期

  • 04月20日 2025

    注册截止日期

主办单位
中国科学院大气物理研究所
承办单位
中国科学院大气物理研究所
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询