A wide P-T range machine learning inter-atomic potential of alumina and its property calculations
编号:150 访问权限:仅限参会人 更新:2025-04-03 15:40:31 浏览:12次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
A wide P-T range machine learning inter-atomic potential of alumina and its property calculations
Qiannian Zhu1,Qiyu Zeng1,Bo Chen1,Dongdong Kang1 and Jiayu Dai1,*
1Department of Physics, National University of Defense Technology, Hunan Provincial Key Laboratory of Extreme Matter and Applications, Hunan Research Center of the Basic Discipline for Physical States, Changsha 410073, China
2National Key Laboratory of Plasma Physics, Laser Fusion Research Center, Chinese Academy of Engineering Physics, Mianyang,621900, China
Abstract
Alumina is a common metal oxide with excellent insulating properties and corrosion resistance, making it crucial for industrial applications. Alumina is also an important component in mantle , which is widely used in high pressure experiments. Alumina has different kinds of phases, in high pressure, there is four main phases: α-Al2O3, Rh2O3(Ⅱ)-type Al2O3, CaIrO3-type Al2O3 and U2S3-type Al2O3[1,2,3]. We use DeepMD approach[4,5], training a wide P-T range machine learning inter-atomic potential (MLIP) of alumina, which contains liquid phase and four phases mentioned above. This MLIP, valid from 0-600GPa and 300-13300K, is used for calculating some basic properties of alumina, such as radius distribution function (RDF), phonon spectrum and meting curve of different phases. The configuration distribution in P-T space of MLIP, the dptest of data and the comparison of DFT vs DPMD for phonon spectrum of Corundum is shown in FIG. 1. The computed properties demonstrate that this MLIP achieves high fidelity in describing the properties of alumina in extreme condition.


FIG. 1. (a)configuration distribution in P-T space of MLIP (b)phonon spectrum(c)dptest of energy per-atom(d)dptest of force(e)dptest of virial per-atom
References
[1] Mashimo T, Tsumoto K, Nakamura K, et al. High-pressure phase transformation of corundum (α-Al2O3) observed under shock compression[J]. Geophysical research letters, 2000, 27(14): 2021-2024.
[2] Tsuchiya J, Tsuchiya T, Wentzcovitch R M. Transition from the Rh2O3(II)- to-CaIrO3 structure and the high-pressure-temperature phase diagram of alumina[J]. Physical Review B—Condensed Matter and Materials Physics, 2005, 72(2): 020103.
[3] Umemoto K, Wentzcovitch R M. Prediction of an U2S3-type polymorph of Al2O3 at 3.7 Mbar[J]. Proceedings of the National Academy of Sciences, 2008, 105(18): 6526-6530.
[4] Zhang L, Han J, Wang H, et al. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics[J]. Physical review letters, 2018, 120(14): 143001.
[5] Wang H, Zhang L, Han J, et al. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics[J]. Computer Physics Communications, 2018, 228: 178-184.





Corresponding author: J. Dai, jydai@nudt.edu.cn.
 
关键词
extreme condition,machine learning interatomic potentiail
报告人
朱千年
博士 National University of Defense Technology

稿件作者
朱千年 National University of Defense Technology
戴佳钰 National University of Defense Technology
陈博 National University of Defense Technology
曾启昱 National University of Defense Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月12日

    2025

    05月15日

    2025

  • 03月26日 2025

    初稿截稿日期

  • 04月30日 2025

    提前注册日期

  • 05月15日 2025

    注册截止日期

主办单位
北京应用物理与计算数学研究所
陕西师范大学
承办单位
陕西师范大学
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询