13 / 2025-03-18 12:42:29
A Lightweight Federated Transfer Learning Method for Fault Diagnosis of Power Transformers Based on Voiceprint Signals
federated transfer learning,across-voltage,lightweight model,voiceprint
全文待审
泓名 卢 / 北京科技大学
凯 张 / 北京科技大学
帅 韩 / 中国电力科学院
鑫 赵 / 中国电力科学院
This paper presents a power transformer fault diagnosis method based on lightweight federated transfer learning, addressing the limitations of traditional voiceprint-based diagnostic methods in across-voltage levels and data privacy protection. The proposed approach integrates adversarial domain adaptation with a federated learning framework, effectively mitigating the challenges posed by differences in voiceprint feature distributions across power transformers of various voltage levels. It enables coordinated optimization of privacy protection and across-voltage knowledge transfer. For voiceprint feature extraction, a novel lightweight network is designed by combining residual structures with depthwise separable convolutional layers, enhancing feature extraction capabilities while reducing the number of parameters. Furthermore, a partial parameter aggregation strategy is employed, uploading only the parameters of the feature extraction network. This reduces the communication overhead and accelerates system response time. Experimental results demonstrate that the proposed method achieves high accuracy and robustness in across-voltage level power transformers fault diagnosis, significantly improving fault detection efficiency.
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询