16 / 2025-03-19 15:58:19
Parallel Principal Entropy Component Analysis for Nonlinear Process Monitoring
principal component analysis, kernel entropy component analysis, parallel structure, feature extraction, nonlinear process monitoring
全文待审
李 涛 / 北京化工大学
韩 永明 / 北京化工大学
马 波 / 北京化工大学
耿 志强 / 北京化工大学
Nonlinear process data usually contains multiple feature attributes, and it is challenging to deeply extract feature information from the data to achieve better process monitoring. To deeply extract the feature information in process data, the method of parallel principal entropy component analysis (PPECA) is proposed for nonlinear process monitoring in this paper. Specifically, the principal component analysis (PCA) is applied to downscale the data and remove the correlation of the data. The principal component and residual scores are calculated to achieve the first level of data feature mining. The single-layer feature extraction makes it difficult to mine the depth of information in the data. Therefore, a two-layer feature parallel extraction model based on the kernel entropy component analysis (KECA) is constructed in the principal and residual spaces, which allows the second layer of features to be mined for capturing the entropy information of the data. Fusing feature information from different data spaces, two statistics are constructed for process monitoring. Applying the proposed method to the numerical example and the actual blast furnace ironmaking process, the simulation results further validate the effectiveness of the proposed method and show superior process monitoring performance.

 
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询