35 / 2025-03-28 10:30:09
Spacecraft Fault Inference based on Multi-source and Multi-level Knowledge Graphs
spacecraft,fault diagnosis,knowledge grap,deep learning
全文待审
晓宇 邢 / 北京控制工程研究所
淑一 王 / 北京控制工程研究所
文静 刘 / 北京控制工程研究所
成瑞 刘 / 北京控制工程研究所
寒玉 梁 / 北京控制工程研究所
妍 张 / 北京控制工程研究所
This paper classifies spacecraft fault knowledge graphs into two categories based on fault knowledge sources and system structure levels: data-driven and knowledge-driven fault knowledge graphs. Distinct fault inference methods are proposed for each type. For data-driven fault knowledge graphs, a multilayer perceptron model is employed to capture semantic information from measuring points and on-orbit data, enabling spacecraft health monitoring and fault location identification. For knowledge-driven fault knowledge graphs, the Graph Attention Deep Deterministic Policy Gradient (GADDPG) is utilized to achieve precise fault path inference. These methods are integrated within a unified fault knowledge graph of the overall control system, constructing a comprehensive fault diagnosis system that combines knowledge and data. Experimental validations using on-orbit data and actual fault cases demonstrate the system's capability to achieve accurate fault localization and hierarchical fault diagnosis.
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询