37 / 2025-03-28 13:42:54
LNO-PINN: Laplace Neural Operator Based Physically Informed Neural Networks for Dynamic System Fault Detection
dynamic systems, fault detection, physically informed neural networks, laplace neural operator
全文待审
蕊 黄 / 重庆大学
可 张 / 重庆大学
家喜 张 / 重庆大学
Fault detection in dynamic systems is essential for ensuring safety, reliability, and optimal performance across various engineering domains. However, it faces significant challenges in complex systems exhibiting nonlinearity, high-order dynamics, and time-variant characteristics. Traditional fault detection methods prove inadequate for addressing the complexity of modern systems. This study introduces a novel framework termed the Laplace Neural Operator-Based Physically Informed Neural Network (LNO-PINN). By integrating physical laws with machine learning, the algorithm employs the Laplace neural operator to effectively handle complex spatio-temporal dependencies. This innovative approach enhances its capability to tackle nonlinear characteristics, high-order dynamics, and time-varying behaviors. Extensive numerical simulations validate its effectiveness in fault detection for complex dynamic systems, particularly in systems exhibiting high-order nonlinear dynamics, thereby providing a groundbreaking methodology for this research field.
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询