39 / 2025-03-28 16:25:56
Driver Gaze Estimation Method Based on Improved Multi-Head Attention
Gaze Estimation,Human-Computer Interaction,Neural Network,Swin Transformer
全文待审
鹏华 李 / 重庆邮电大学
晋川 宾 / 重庆邮电大学
洋铭 张 / 系统总体研究所
杰 侯 / 重庆邮电大学
盛 项 / 重庆邮电大学
晶晶 周 / 中国汽车工程研究院股份有限公司
To enhance driver gaze estimation by fully lever aging ocular features, this study proposes a parallel dual branch network that integrates an improved multi-head attention backbone with an eye feature extraction branch. To overcome challenges such as inadequate spatial information capture, in efficient multi-scale feature fusion, and underutilized channel information, a Gaze Optimization Module and Hierarchical Feature-Axis Convolution are introduced. The method follows a structured process: first, preprocessed face and eye images are input into the model. The enhanced multi-head attention backbone processes facial features, while a CNN-based branch extracts ocular features. Subsequently, an attention cross module and dual-feature aggregation module refine feature representa tion, ensuring effective fusion of global and local information. Finally, the driver’s gaze direction is estimated. Experiments on the MPIIGazeFace dataset show that the proposed method outperforms existing networks by reducing estimation errors, demonstrating its effectiveness in gaze prediction.
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询