40 / 2025-03-28 16:15:34
Physics-informed Neural Network for SOC Estimation of Lithium-ion Battery With Dual Polarization Model
physics-informed neural network(PINN),dual-polarization model,state of charge(SOC),lithium-ion battery
全文待审
鹏华 李 / 重庆邮电大学
煜烨 郑 / 重庆邮电大学
洋铭 张 / 系统总体研究所
杰 侯 / 重庆邮电大学
盛 项 / 重庆邮电大学
晶晶 周 / 中国汽车工程研究院股份有限公司

The stable and safe operation of lithium-ion batteries is the goal of the battery management system (BMS), and the estimation of the state of charge (SOC) is one of the primary tasks of the BMS, making accurate SOC estimation a highly prominent topic over the past decade. However, existing methods inadequately integrate physical models with historical data, leading to bidirectional or unidirectional information disconnection, which poses challenges for achieving stable and precise SOC estimation. To tackle this issue, this paper proposes an enhanced Physics-Informed Neural Network (PINN) framework. The approach incorporates an additional neural network to simulate battery degradation dynamics and introduces soft constraints based on the degradation process. To effectively balance physical models and neural network, the framework includes a loss weight allocation strategy grounded in uncertainty estimation. Additionally, utilizing a dual-polarization model of the battery, supplementary features are extracted via parameter identification, further strengthening the fusion of data and model. The experimental results in the XJTU battery dataset demonstrate that the proposed method achieves a root mean square error (RMSE) of 0.0069 for SOC estimation, surpassing the performance of baseline models.

重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询