The stable and safe operation of lithium-ion batteries is the goal of the battery management system (BMS), and the estimation of the state of charge (SOC) is one of the primary tasks of the BMS, making accurate SOC estimation a highly prominent topic over the past decade. However, existing methods inadequately integrate physical models with historical data, leading to bidirectional or unidirectional information disconnection, which poses challenges for achieving stable and precise SOC estimation. To tackle this issue, this paper proposes an enhanced Physics-Informed Neural Network (PINN) framework. The approach incorporates an additional neural network to simulate battery degradation dynamics and introduces soft constraints based on the degradation process. To effectively balance physical models and neural network, the framework includes a loss weight allocation strategy grounded in uncertainty estimation. Additionally, utilizing a dual-polarization model of the battery, supplementary features are extracted via parameter identification, further strengthening the fusion of data and model. The experimental results in the XJTU battery dataset demonstrate that the proposed method achieves a root mean square error (RMSE) of 0.0069 for SOC estimation, surpassing the performance of baseline models.
08月22日
2025
08月24日
2025
初稿截稿日期
2025年08月22日 中国 乌鲁木齐市(wulumuqi)
2025全国技术过程故障诊断与安全性学术会议(CAA SAFEPROCESS 2025)2023年09月22日 中国 宜宾市
第十三届全国技术过程故障诊断与安全性学术会议2023年09月22日 中国 Yibin
2023全国技术过程故障诊断与安全性学术会议2021年08月06日 中国 Chengdu
第十二届全国技术过程故障诊断与安全性学术会议2019年07月05日 中国
2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes2017年08月18日 中国 青岛市
第十届全国技术过程故障诊断与安全性学术会议2009年08月01日 中国 武汉市
第六届全国技术过程故障诊断与安全性学术会议