44 / 2025-03-28 19:18:58
Remaining Useful Life Prediction of Rolling Bearings Based on Full-Band Feature Feedback Adaptive Fusion
Rolling bearings,Remaining useful life,Full-frequency-band feature extraction,Wasserstein distance,Adaptive feedback fusion
全文待审
蕾 姜 / 火箭军工程大学
建飞 郑 / 火箭军工程大学
心怡 成 / 火箭军工程大学
立浩 杨 / 火箭军工程大学
茜 陈 / 火箭军工程大学
其辉 韩 / 火箭军工程大学
Rolling bearings serve as the core components in mechanical equipment, and accurately predicting their Remaining Useful Life (RUL) is crucial for ensuring equipment reliability and reducing maintenance costs. However, existing RUL prediction methods often underutilize frequency-domain features and fail to account for prediction outcomes in feature fusion. To address these issues, this paper proposes an RUL prediction framework based on full-frequency-band degradation feature extraction and adaptive feedback fusion. First, a 1/3 binary tree filtering strategy is used to perform multi-scale decomposition of the vibration signals, and the Wasserstein distance (WD) is employed to extract full-frequency-band degradation features. Next, a dynamic feedback mechanism is introduced to adaptively adjust Health Indicators (HI). Experimental results on the XJTU-SY dataset confirm the effectiveness of the proposed method
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询