45 / 2025-03-28 22:13:20
An fault diagnosis method based on self-organizing map neural networks for the artillery automatic machine
Fault diagnosis; Self-Organizing Map; Kullback-Leibler; Automatic machine
全文待审
哲研 刘 / 西北工业大学软件学院
Aiming at the challenges in detecting faults of rotating chamber bushings, curved sliding plates, and cam mechanisms in artillery automatic mechanisms, this paper proposes a fault diagnosis method based on Self-Organizing Map (SOM) neural networks. Signals from both faulty and normal states of the rotating chamber driving system are decomposed using Ensemble Empirical Mode Decomposition (EEMD). Fault feature vectors are then extracted through the Kullback-Leibler (K-L) divergence method. These feature vectors are utilized as training samples for SOM-based clustering analysis, enabling effective fault diagnosis of the driving system. Simulation results demonstrate that the proposed algorithm achieves accurate identification of faults in rotating chamber bushings, curved sliding plates, and cam mechanisms within artillery automatic mechanisms.
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询