51 / 2025-03-29 17:02:23
Fault Diagnosis of Automotive Body-in-White Welding Production Line Based on Imbalanced Data
synthetic minority over-sampling technique,ResNet,fault diagnosis,bearings
全文待审
智 高 / 长春工业大学
美萱 何 / Changchun University of Technology
菁茹 刘 / FAW Tooling Die Manufacturing
邦成 张 / 长春工业大学;长春工程学院
梓旭 赵 / Changchun University of Technology
In practical production scenarios, especially in the automotive white body welding production line, the sample distribution across different fault categories is often highly imbalanced, posing significant challenges for data-driven methods in handling imbalanced data, which in turn limits the fault recognition and classification capabilities. To address the imbalance issue of bearing vibration data in the welding production line, an improved Residual Networks method combining Synthetic Minority Over-sampling Technique and Squeeze-and-Excitation module is proposed. The Synthetic Minority Over-sampling Technique  balances the class distribution by generating synthetic samples, significantly improving the classification ability of minority class samples. The Squeeze-and-Excitation module introduces a channel attention mechanism that dynamically adjusts the feature channel weights, enhancing the model's focus on key features. Experimental results show that the proposed method outperforms other methods in classification metrics such as F1 Score, Precision, and Recall, particularly achieving an improvement in the classification accuracy of the minority class from 87.50% to 100%.
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询