53 / 2025-03-29 20:24:50
Research on identification method of conveyor abnormal condition based on Convolutional neural network
broken chain fault of stuck chain; Permanent magnet synchronous motor drive; Current change characteristics; Loss function optimization
全文待审
杨 志勇 / 特变电工新疆天池能源有限责任公司
俊杰 石 / 特变电工新疆天池能源有限责任公司
郑 顺顺 / 昌吉州应急管理局
胡 桂林 / 特变电工新疆天池能源有限责任公司
Aiming at the difficulty of online detection of the broken chain of scraper conveyors, this paper presents a method to identify the broken chain of scraper conveyors based on permanent magnet synchronous motor-driven current change characteristics. Through the rigid-body dynamics-discrete element and electromechanical control co-simulation method, the rigid-electro-mechanical coupling model of scraper conveyor is constructed, and the transient sudden change characteristics of motor current signal in the conveyor running state and stuck chain state are studied. The motor current signal under the operating condition of the scraper conveyor was collected on-site. Wavelet transform and convolutional neural network analysis methods were used to extract and identify the motor current signal characteristics under the operating condition with a broken chain. The elastic network was used to optimize the convolutional neural network loss function, and the accuracy of the identification model of the broken chain was verified.

 
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询