57 / 2025-03-29 21:11:48
Multi-Agent Reinforcement Learning Scheduling Strategy for UAV Swarms
Multi-Agent Reinforcement Learning,UAV Swarm Scheduling,Dynamic Task Allocation,Hybrid Reward Mechanism,Power Infrastructure Inspection
全文待审
Wang Renshu / 国网福建电力科学研究院
Wu Wenbin / 国网福建电力科学研究院
Zhang Weihao / 国网福建电力科学研究院
Chen Zhuolei / 国网福建电力科学研究院
Liang Manshu / 国网福建电力科学研究院
Unmanned aerial vehicle (UAV) swarms offer significant efficiency gains for power infrastructure inspection but face challenges in dynamic task allocation and real-time scheduling. This study proposes a hierarchical multi-agent reinforcement learning (MARL) framework integrating graph neural networks and a hybrid reward mechanism. Key innovations include global-local decision balance, efficient state encoding via graph topology, and a reward function combining short-term inspection efficiency with long-term maintenance forecasting. Experiments demonstrate a 35% improvement in inspection coverage and a 28% reduction in emergency response times compared to traditional methods.

 
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询