61 / 2025-03-29 23:13:13
Research on Intelligent Monitoring and Fault Diagnosis Methods for Wind Turbines Based on Data Mining
data-driven methodology, wind power, intelligent monitoring systems
全文待审
文儒 孙 / 石河子大学
雪 胡 / 石河子大学
立新 张 / 石河子大学
立娇 龚 / 石河子大学
蓝予 张 / 石河子大学
Under the impetus of China's 14th Five-Year Plan, the renewable energy sector has experienced accelerated development, with wind power—a mature and commercially viable clean energy source—facing significant challenges in operation and maintenance (O&M) amid its large-scale deployment. Wind turbines, predominantly deployed in complex climatic environments, suffer accelerated fatigue degradation of critical components due to the coupling effects of dynamic meteorological parameters and mechanical loads. This study focuses on the application of data mining and artificial intelligence (AI) technologies in establishing intelligent monitoring and fault diagnosis systems for wind turbines. A data-driven methodology is proposed to enhance fault detection accuracy and predictive maintenance capabilities. Looking ahead, big data technologies are poised to drive intelligent upgrades within the wind power industry, achieving strategic breakthroughs in cross-system collaborative optimization and autonomous decision-making, thereby empowering the sustainable development of renewable energy.
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询