63 / 2025-03-30 00:39:15
Research on Differentiated Training of Data for Intelligent Safety-critical Software
Differentiated Training,Safety-critical Software,Data Construction,Data Splitting,Artificial Intelligence
全文待审
健堃 徐 / 29所
立金 吴 / 船综院
泊江 刘 / 船综院
游 李 / 29所
With the advancement of technology and scientific development, intelligent safety-critical software plays an increasingly critical role in modern battlefields. Traditional approaches for intelligent safety-critical software are constrained by manually designed feature dimensions, often leading to feature loss. Integrating the data characteristics of intelligent safety-critical software, this paper proposes a differentiated training method tailored to control modules, processing modules, input-output modules, and health management modules – the four core data modules. First, this work analyzes the unique attributes of intelligent safety-critical software, clarifying its high reliability, real-time performance, reusability, and attack-resistant capabilities. Second, we select appropriate training data construction methods based on varying scenarios and mission requirements, specifying training scenarios and optimizing training approaches for control data, processing data, input-output data, and health management data. Third, we implement training methods for heterogeneous safety-critical data, including stratified sampling, adversarial validation, time-series segmentation, and cross-validation, establishing a high-reliability intelligent training framework for smart safety-critical software. Finally, the method is validated through case studies, demonstrating improvements in alarm accuracy and data effectiveness, reducing fault rates and control errors, thereby verifying the proposed methodology.
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询