65 / 2025-03-30 11:34:24
A Motor Fault Diagnosis Method Based on Transformer-ResNet Feature Fusion
motor fault diagnosis; Transformer; ResNet; multi-band feature decoupling; feature fusion
全文录用
一瑞 马 / 上海交通大学
鹏程 夏 / 上海交通大学
亦翔 黄 / 上海交通大学
影 蒲 / 上海交通大学
成良 刘 / 上海交通大学
顺 刘 / 上海交通大学
    Motor fault diagnosis is a core aspect of predictive maintenance in industrial equipment. To address the limitations of traditional data-driven methods in decoupling multi-band features, this paper proposes a motor fault diagnosis method based on Transformer-ResNet feature fusion. The method uses discrete wavelet transform (DWT) to achieve multi-band signal decomposition, employs a residual network (ResNet) to extract low-frequency features, utilizes a Transformer to mine high-frequency features, and then fuses the two types of features via a feature fusion mechanism to improve the model’s feature extraction capability. Experiments demonstrate that the proposed method achieves an average accuracy of 95.8% in motor fault diagnosis, which is 12.3% higher than that of single-model methods, validating the effectiveness of the Transformer-ResNet feature fusion approach.
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询