7 / 2025-03-11 23:07:14
Graph Attention and Siamese Networks for Wind Turbine Blade Icing Prediction
wind turbine blades, icing prediction, few-shot learning(FSL), graph attention network(GAT)
全文待审
华彬 韩 / 新疆大学电气工程学院
丙朋 高 / 新疆大学智能科学与技术学院
鑫 蔡 / 新疆大学智能科学与技术学院
凯 孙 / 新疆大学电气工程学院
Icing on wind turbine blades in winter can lead to power generation reduction and income loss. Timely and accurate prediction of blade icing status is crucial for improving the safety and economic performance of wind farms. However, existing blade icing prediction methods fail to effectively address issues such as small sample sizes, non-Euclidean structure, and low prediction accuracy in multi-dimensional sensor data. To address these limitations, this study proposes a GAT-BiLSTM-SN-based blade icing prediction method. at first, the uses recursive feature elimination(RFE) is used to extract features strongly correlated with blade icing. Then, the focal loss function is used to assign more weight to the lower proportion of ice samples, addressing the significant class imbalance between ice and no ice categories. Finally, the GAT-BiLSTM-SN model is used to to establish a blade icing prediction model, in which 15 hours of historical data is input and the next 15 hours of icing status is output. Experimental results show that the GAT-BiLSTM-SN model achieves accuracy, precision, recall, and F1 scores of 0.9107, 0.9434, 0.8772, and 0.9091, respectively, in few-shot learning scenarios. 
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询