82 / 2025-04-05 20:33:33
Nonstationary Process Monitoring Based on Analytic Stationary Subspace Analysis
Nonstationary,process monitoring,principal angle,analytic stationary subspace analysis
全文待审
龙 高 / 山东科技大学
东华 周 / 山东科技大学
洪泉 纪 / 山东科技大学
Stationary subspace analysis (SSA) is an effective tool for nonstationary process monitoring, by dividing process data into stationary and nonstationary components. However, only stationary components are used for process monitoring in most of SSA-based methods. Nonstationary components are difficult to monitor because anomalies can be easily masked by trend variations. In this paper, a novel nonstationary process monitoring method is proposed based on the analytic SSA (ASSA) method. Different from conventional methods, nonstationary components are monitored by constructing a principal angle-based statistic. The core idea is that the corresponding subspace of nonstationary components is invariant in the fault-free case, and anomalies can be monitored by comparing the variation between offline and online nonstationary subspaces. The effectiveness of the proposed method is validated on the Tennessee Eastman benchmark process.
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询