87 / 2025-04-08 22:59:37
Temporal-Decay Attention Network with Parallel Feature Learning for Intercooler Tower Temperature Prediction
Temperature prediction, dual-branch architecture, temporal attention mechanism, deep learning, LSTM, Transformer
全文待审
濮 赵 / 新疆大学电气工程学院
鑫 蔡 / 新疆大学智能科学与技术学院
新元 南 / 新疆大学
This paper proposes a novel model for industrial cooling tower temperature prediction, incorporating two core components: a Dual-branch Parallel Fusion Architecture (DPFA) and a Temporal Attention Mechanism with Time-Decay(TAMTD). The architecture leverages BiLSTM branch for capturing local dynamic features and iTransformer branch for extracting global feature dependencies, such that residual is preserved paths to maintain critical information integrity. Additionally, the temporal-decay attention mechanism is introduced to modulate historical data weights through decay coefficients and enhance recent temporal information representation. Experimental results demonstrate that the proposed model significantly outperforms existing methods across multiple evaluation metrics. That is the reductions of 15.88\%, 29.22\%, and 25.42\% in RMSE, MSE, and MAE respectively, compared to the BiLSTM baseline. The effectiveness of individual components is further validated through comprehensive ablation studies and comparative experiments.
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询