93 / 2025-04-14 19:04:23
Multi-Agent Fault-Tolerant Control based on Adaptive Disturbance Suppression in the Reinforcement Learning State Space
MARL, fault-tolerant control, state space, mutual information
全文待审
Mohan Niu / Beijing University of Technology
Fangyu Li / Beijing University of Technology
Multi-agent systems are becoming increasingly critical in practical manufacturing, transportation, and warehousing applications. State space-based multi-agent reinforcement learning (MARL) provides comprehensive multi-agent control strategies for complex environments. However, state space chaos caused by sensor failure-induced disturbances results in the degradation of the MARL control performance. To mitigate state space chaos, we propose an MARL-based adaptive state disturbance suppression method (ADSDS). First, we develop a contrastive encoder in the actor network to adaptively select reward-guided features for fault/redundant observation exclusion. Second, we design a regularized robust control based on prioritized replay and adaptive gradient regularization. Finally, we incorporate uncertain fault conditions and dynamic environments to validate robust control performances of the proposed ADSDS. The experiments demonstrate that our method has faster convergence and higher cumulative returns than existing methods in faulty environments.
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询