98 / 2025-04-16 18:12:45
Deep Dynamic Residual Space Contribution Based Fault Diagnosis
GRU,DPCA,RBC,fault diagnosis
全文待审
金传 钱 / 浙江大学控制学院
执环 宋 / 浙江大学
Xiaoyu Jiang / Beihang University
In complex dynamic processes, fault information will propagate among various variables over time, making it difficult for traditional fault diagnosis methods to locate the root cause of the fault. To address this issue, this paper proposed a fault diagnosis method based on deep dynamic residual space (DDRS) contribution. The model used for fault information extraction mainly consists of a gate recurrent unit (GRU) based autoregressive network, and extracts the remaining process information from the predicted residuals through dynamic principal component analysis (DPCA). The final fault diagnosis result is achieved through the construction of reconstruction based contribution (RBC) on the trained DPCA. The effectiveness of the proposed fault diagnosis method was verified through a numerical example and experiments on multiphase flow processes.
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询