MPA-YOLO:Insulator Defect Detection Based on Improved YOLOV11 Algorithm
编号:10 访问权限:仅限参会人 更新:2025-04-09 16:26:29 浏览:16次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
This paper addresses the challenges of complex environmental interference and small target recognition in power system insulator defect detection by proposing an enhanced YOLOv11-based algorithm. We implement three novel mod ules: the Multi-Resolution Edge Feature Integration module (MREFI), the PoolingFormer module (PFM), and the Adaptive Convolutional Gated Linear Unit attention mechanism (ACGLU). The MREFI module strengthens defect boundary recognition by extracting and fusing edge features across multiple spatial scales. The PFM module replaces conventional self-attention mechanisms with efficient pooling operations, substantially re ducing computational complexity while preserving global infor mation interaction capabilities. The ACGLU module enhances feature representation by integrating convolutional operations with gating mechanisms. Experimental results demonstrate that our improved algorithm significantly outperforms the original YOLOv11modelindetection accuracy, with mAP@0.5 increasing by 3.3 percentage points and mAP@0.5-0.95 by 5.1 percentage points. Simultaneously, the model achieves reduced computa tional complexity and parameter count, making it more suitable for practical deployment in power system inspection applications.
关键词
defect detection, yolov11, PFM, ACGLU
报告人
Yapei Guo
Master Xinjiang University

稿件作者
Yapei Guo Xinjiang University
Xinkai Li Xinjiang University
Yue Meng Xinjiang University
Hongli Zhang Xinjiang University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询