Enhanced State Estimation of Railway Switch Machine Based on Deep Extended Kalman Filter
编号:6 访问权限:仅限参会人 更新:2025-04-07 16:00:48 浏览:28次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
The condition monitoring of switch machines (SM), which are critical actuators in railway turnout systems, is essential for ensuring the safe and reliable operation of railways. However, traditional Extended Kalman Filters (EKF) face challenges in effectively capturing high-order nonlinear characteristics and accurately modeling the dynamic behaviors of short-term periodic systems. To address these limitations, this paper proposes a Deep Extended Kalman Filter (DEKF) framework designed specifically for short-term periodic nonlinear systems. The proposed approach integrates a Long Short-Term Memory (LSTM) network to extract intermediate features from the EKF, thereby enhancing the utilization of nonlinear dynamic information. Furthermore, a time-series sample set covering complete operation cycles is constructed to improve the representation of prior knowledge embedded in short-term periodic actions of the switch machine. By employing an offline training and online fusion strategy, the DEKF achieves high-precision real-time state estimation of the switch machine system. Simulation experiments conducted on a nonlinear switch machine model demonstrate that the proposed DEKF significantly outperforms the traditional EKF in state estimation accuracy, providing strong theoretical support for real-time condition monitoring and fault diagnosis of railway signaling systems.
关键词
Deep neural network,extended Kalman filter,state estimation,switch machine
报告人
俊琪 刘
西安理工大学

稿件作者
俊琪 刘 西安理工大学
金诚 王 北京交通大学
成林 文 广东石油化工学院
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    08月22日

    2025

    08月24日

    2025

  • 04月25日 2025

    初稿截稿日期

主办单位
中国自动化学会技术过程的故障诊断与安全性专业委员会
承办单位
新疆大学
新疆自动化学会
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询