53 / 2025-04-14 09:06:11
Multi-target dairy cow rumination behavior recognition method based on Yolov11-StrongSort and BiLSTM
Object detection,object tracking,behavior recognition
摘要待审
Shilei Wei / Anhui University
Yangyang Guo / Anhui university
Cong Han / Anhui University
Zhuohan Qian / Anhui University
Yongliang Qiao / The University of Adelaide
In the context of expanding breeding operations and advancing information technology, intelligent modernization has become an imperative trend in dairy farming. Automated monitoring of bovine rumination behavior plays a critical role in precision feeding and health management. This study presents a multi-target dairy cow rumination behavior recognition method based on Yolov11-StrongSort and BiLSTM. Our approach employs the Yolov11-StrongSort model for continuous tracking of key rumination-related anatomical features, coupled with a bidirectional long short-term memory network (BiLSTM) for temporal pattern analysis, enabling accurate determination of rumination status and duration calculation. Comparative experiments demonstrate superior performance over conventional motion-based detection methods, achieving over 90% recognition accuracy with temporal measurements closely aligned to ground truth observations. This technological advancement facilitates the advancement of smart dairy farming through enhanced behavioral monitoring capabilities, providing a robust solution for large-scale herd management and precision livestock farming practices.

 
重要日期
  • 会议日期

    10月20日

    2025

    10月23日

    2025

  • 04月15日 2025

    摘要截稿日期

  • 05月01日 2025

    摘要录用通知日期

  • 06月30日 2025

    初稿截稿日期

  • 08月01日 2025

    终稿截稿日期

  • 08月31日 2025

    初稿录用通知日期

  • 10月23日 2025

    注册截止日期

主办单位
International Research Center for Animal Environment and Welfare (IRCAEW)
Chinese Society of Agricultural Engineering (CSAE)
China Agricultural University (CAU)
Rongchang District People’s Government
The National Center of Technology Innovation for Pigs
承办单位
Chongqing Academy of Animal Sciences (CAAS)
Key Lab of Agricultural Engineering in Structure and Environment, Chinese Ministry of Agriculture, Beijing, China
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询