Rapid seismic response prediction model of bridges with small-sample data based on cluster and multi-level feature fusion deep learning algorithms
编号:24 访问权限:仅限参会人 更新:2025-07-28 20:13:07 浏览:307次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Under earthquake actions, bridge structures may suffer from various forms of damage, which threaten the overall safety of the structure. Traditional finite element methods have high computational costs in nonlinear time-history analysis. In order to rapidly and accurately assess the seismic performance of bridges, a method combined with cluster and multi-level feature fusion deep learning algorithms with low computational cost and high computational accuracy is proposed. To address the challenge of small-sample data, the DTW-Kmedoids time-series clustering framework is proposed to cluster ground motion records and generate the representative small-sample training set for DL model training. The proposed Multi-level feature fusion GRU model with strong generalization capability and high robustness was trained in small-sample scenarios and is capable of accurately and efficiently predicting the nonlinear response of bridge structures under seismic actions. The effectiveness of the proposed method is verified by comparing the computational results with the traditional finite element model. This study provides a novel and efficient solution for seismic response prediction in the small-sample data scenario of bridge engineering.
 
关键词
Bridge engineering;Multi-level feature fusion mechanism;Clustering strategy;Small-sample data;Seismic response prediction
报告人
卢春德
博士研究生 华中科技大学

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    08月15日

    2025

    08月17日

    2025

  • 08月08日 2025

    初稿截稿日期

  • 08月08日 2025

    报告提交截止日期

  • 08月17日 2025

    注册截止日期

主办单位
兰州交通大学
同济大学
承办单位
兰州交通大学土木工程学院
中国建筑第六工程局有限公司
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询