Active Distribution Network Scheduling Based on Safe Deep Reinforcement Learning
编号:2 访问权限:仅限参会人 更新:2025-07-30 20:15:11 浏览:151次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Against the backdrop of high proportion penetration of new energy, the difficulty of scheduling optimization for active distribution networks is gradually increasing. This paper proposes a safe deep reinforcement learning framework integrating a data-driven power flow model to achieve the scheduling optimization of new energy. To address the challenge of active voltage control, a safe deep reinforcement learning strategy combined with a data-driven power flow model is designed, which maps reactive power to voltage amplitude through the Q2V strategy. Simulation results on the modified IEEE 33-bus system show that the optimization effect of this framework is significantly improved compared with the traditional Q strategy and V strategy. It achieves 46.2% and 64.9% reduction in line loss respectively, while strictly controlling the node voltage deviation within the range of ±5%.
关键词
Active distribution network,power flow model,safe deep reinforcement learning,scheduling optimization
报告人
Shao Zhou
Student Central South University

稿件作者
Shao Zhou Central South University
Dongran Song Central South University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月07日

    2025

    11月09日

    2025

  • 09月10日 2025

    初稿截稿日期

主办单位
IEEE西南交通大学IAS学生分会
承办单位
西南交通大学电气工程学院
SPACI车网关系研究室
四川大学电力系统稳定与高压直流输电研究团队
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询