23 / 2015-07-05 19:27:59
Adaptive Genetic Algorithm to Optimize the Parameters of Evaluation Function of Dots-and-Boxes
Adaptive genetic algorithm; Evaluation function; Game
全文录用
Designed an evaluation function with parameters, and used genetic algorithm to optimize the parameters. This paper considers the objective function’s variation trends in searching point and the information is added to the fitness function to guide the searching. Simultaneously improved adaptive genetic algorithm enables crossover probability and mutation probability automatically resized according to the individual's fitness. These measures have greatly improved the convergence rate of the algorithm. Sparring algorithm is introduced to guide the training, using gradient training programs to save training time. Experiments show skills in playing Dots-and-Boxes are greatly improved after its evaluation function parameters are optimized.
重要日期
  • 会议日期

    10月29日

    2015

    10月30日

    2015

  • 09月15日 2015

    初稿截稿日期

  • 09月15日 2015

    提前注册日期

  • 09月30日 2015

    初稿录用通知日期

  • 09月30日 2015

    终稿截稿日期

  • 10月30日 2015

    注册截止日期

联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询