78 / 2015-10-24 17:18:00
Improved MGGP Approach for Spatial Grade Prediction
spatial grade prediction,OK,SVR,Improved MGGP
终稿
changik han / 中国东北大学资源与土木工程学院
ende wang / 中国东北大学
Jiyang Wang / 中国东北大学
jianming xia / 中国东北大学
Jong Myongguk / Northeastern University
Ra Chongyol / Kimchaek University of Technology
The demand for a new grade predictor originates from the limitation of conventional methods. Typically, geostatistics methods such as kriging reflect well the spatial variations, but on the other hand they only capture the weighted linear relationship between sampled values and evaluated value. While artificial intelligent methods such as neural network and support vector regression (SVR) have ability to capture non-linear relationships between the input and output data under extreme conditions, they show poor performance when the sample size is small due to lack of spatial variation in sample field. This paper introduces an improved multi-gene genetic programming (MGGP) model for spatial grade prediction and also compares it with other well-known techniques such as ordinary kriging (OK) and SVR. The proposed technique organically combines the self-adaptive nonlinear capturing ability of MGGP about the input-output relationship with the expression ability of spatial variation in geostatistics. The results obtained from case study show that it produces much higher prediction accuracy than either OK or SVR, and has strong generalization ability.
重要日期
  • 12月29日

    2016

    会议日期

  • 12月10日 2016

    初稿截稿日期

  • 12月13日 2016

    终稿截稿日期

  • 12月29日 2016

    注册截止日期

主办单位
中国自然资源学会
中国地质大学(北京)人文经管学院
湖北省众科地质与环境技术服务中心
承办单位
中国地质调查局发展研究中心
湖北省众科地质与环境技术服务中心
北京土人咨询服务有限公司
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询