25 / 2016-07-05 19:10:56
Internal Combustion Engine Fault Detection by Wavelet Packet and Softmax Regression
Wavelet Packet Transform,Softmax Regression,artificial neural network
全文待审
Praveen Chopra / DRDO
Sandeep Yadav / IIT Jodhpur
An automated fault detection and classification technique is proposed using acoustic signal generated from IC (Internal Combustion) engines. This technique aims to remove unwanted features of acoustic data by pruning the wavelet packet transform (WPT) tree. This pruning is done by entropy based best basis algorithm. The FFT spectrum of the reconstructed signal from the pruned tree is used as the feature vector for the classifier. The FFT Spectrum of data removes the repetition of features and reduce the size of the data. This data is used by softmax regression classifier, which classifies unknown engines into healthy and faulty class. This technique is tested on IC engines, with overall classification performance of 142 correct classifications out of 143 test cases with five different fault classes with majority voting. The classification performance of softmax regression is also compared with widely used artificial neural network classifier and softmax regression is found to be superior in performance.
重要日期
  • 会议日期

    09月23日

    2016

    09月25日

    2016

  • 07月20日 2016

    初稿截稿日期

  • 08月21日 2016

    初稿录用通知日期

  • 09月07日 2016

    终稿截稿日期

  • 09月25日 2016

    注册截止日期

主办单位
IEEE
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询