208 / 2017-01-09 19:09:20
Constructing a Linear discrete system in Kernel space as a supervised classifier
1857,12347,12348,5604,12349
终稿
Florintina C / National Institute of Technology, Tiruchirappalli
Gopi E.S. / National Institute of Technology, Trichy
The pattern recognition techniques involve feature extraction from the data, dimensionality reduction (like PCA, LDA, K-LDA, etc) and constructing a classifier (NN, NM, SVM, etc.) using the training set and validating the constructed classifier using the testing set. The usage of digital signal processing (DSP) techniques in pattern recognition is always limited to the feature extraction stage such as collecting the Fourier, wavelet co-efficients, HMM, GMM, etc. In this paper we explore the usage of classical DSP techniques like convolution, FIR filter to construct the classifier and are compared with the state of the art techniques. The proposed technique paves the alternative way to construct a classifier that is helpful for Big data analysis.
重要日期
  • 会议日期

    03月22日

    2017

    03月24日

    2017

  • 02月15日 2017

    初稿截稿日期

  • 02月20日 2017

    初稿录用通知日期

  • 02月22日 2017

    终稿截稿日期

  • 03月24日 2017

    注册截止日期

移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询