37 / 2017-05-13 19:42:05
Classification of EEG Signal by STFT-CNN Framework: Identification of Right-/left-hand Motor Imagination in BCI Systems
Electroencephalogram,Short-time Fourier transform ,Convolutional neural network,Motor imagery
全文录用
遥 路 / Minzu University of China
惠萍 蒋 / Minzu University of China
This paper described the relationship between EEG signals and MI in BCI system. EEG signals were used to classify two kinds of direction of motion, left and right. We extracted features from original EEG data using STFT and put them into CNN, The result shows that the framework of STFT-CNN has higher average test accuracy. Furthermore, the generations of motor imagery were analyzed, the result shows that the better classification results will appear during the middle stage, and its classification accuracy could reach 92.8%.
重要日期
  • 会议日期

    07月22日

    2017

    07月23日

    2017

  • 05月15日 2017

    终稿截稿日期

  • 07月23日 2017

    注册截止日期

联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询